НИИ ФХП БГУ

Research Institute for Physical Chemical Problems
of the Belarusian State University

Egorov Vladimir



Principal Researcher of the Laboratory of Ionometry and Chemical Metrology of the Research Institute for Physical Chemical Problems of the Belarusian State University

 
Doctor of Chemical Sciences, Full Professor
 
h-index (Scopus) – 9
h-index (Google science) – 11
https://scholar.google.ru/citations?user=w6TUi-QAAAAJ&hl=ru
 
Education
1972 – Belarusian state university, department of chemistry,
1999– Doctor of Chemical Sciences,
2008 – Full Professor
 
Career
1972 – 1974 – PHD student, Belarusian State University
1974 – 1978 – Junior Research Fellow, Belarusian State University
1978 – 1986 – Senior Research Fellow, Research Institute for Physical Chemical Problems of the Belarusian State University;
1986 – 1988 – Leading Research Fellow, Research Institute for Physical Chemical Problems of the Belarusian State University;
1988 – 2007 – Head of Laboratory, Research Institute for Physical Chemical Problems of the Belarusian State University;
2007 – present time – Principal Research Fellow, Research Institute for Physical Chemical Problems of the Belarusian State University.
 
Current research activity, main achievements
The main scientific works are in the field of ionometry and chemistry of extraction.
The main achievements are as follows:
  • a method for predicting the ion-exchange and ionic associates extraction constants, based on the separate consideration of the extractionparameters of individual ions, determined for standard systems;
  • discovery and theoretical substantiation of the effect of a lipophilic ionic additive on the selectivity of electrodes based on liquid ion exchangers [1], as well as of the effect of strong dependence of potentiometric selectivity on the steric availability of the exchange site [2];
  • the theory of the functioning of H+-selective electrodes based on neutral carriers in strongly associated systems [3, 4];
  • formulation of the main principles and substantiation of specific ways to control the selectivity of ion-selective electrodes, reversible to the cations of physiologically active amines of various structures [5];
  • substantiation of experimental methods for estimation of the diffusion characteristics of membranes of ion-selective electrodes from potentiometric data [6, 7], as well as methods for estimation of the selectivity coefficients of highly selective electrodes [8, 9].
More than 40 ion-selective electrodes with improved performance characteristics, in particular, for determination of pH, sulfate, water hardness, a number of physiologically active amines, non-steroidal analgesics have been developed.
About 400 scientific works, including more than10 reviews and 29 author certificates for inventions and patents were published.
6 Ph.D. dissertations were fulfilled under supervision.
 
Awards
The diplomas of the Ministry of Higher and Secondary Special Education of the BSSR (1982, 1987), the Certificate of Honor of the Ministry of Public Education of the BSSR (1982), the Certificate of Honor of the Ministry of Education of the Republic of Belarus (2003), the sign "Inventor of the USSR". Personal bonus of the President of the Republic of Belarus (2005), Honored Worker of the Belarusian State University (2015).
 
List of the selected publications
 
  1. Egorov V.V., Repin V.A., Ovsyannikova T.A. Influence of ion association on the selectivity of electrodes reversible to organic cations // Zh. Anal. Khim. 1992. Vol. 47. P. 1685–1692.
  2. Egorov V.V., Rakhman’ko E.M., Okaev E.B., Pomelenok E.V., Nazarov V.A. Effects of ion association of lipophilic quaternary ammonium salts in ion-exchange and potentiometric selectivity // Talanta. 2004. Vol. 63. P. 119–130.
  3. Egorov V.V., Lushchik Ya.F. H+-selective electrodes based on neutral carriers: specific features in behaviour and quantitative description of the electrode response // Talanta. 1990. Vol. 37. Р. 461−469.
  4. Egorov V.V., Sin’kevich Yu.V. pH-ISEs with an expanded measuring range based on calix[4]arenes: specific features of the behaviour and description of the electrode response // Talanta. 1999. Vol. 46. Р. 23−38.
  5. Egorov V.V., Bolotin A.A. Ion-selective electrodes for the determination of organic ammonuim ions: ways for selectivity control // Talanta. 2006. Vol. 70. P. 1107–1117.http://www.sciencedirect.com/science/article/pii/S003991400600155X
  6. Egorov V.V., Nazarov V.A., Zdrachek E.A. Methods for estimation of generalized diffusion parameter at membrane – solution interface // Electroanalysis. 2012. Vol. 24. P. 76–84.
  7. Zdrachek E.A., Nazarov V.A., Egorov V.V. Generalized diffusion parameter: main factors of influence and application for estimation of selectivity coefficients for highly selective electrodes // Electroanalysis. 2015. Vol. 27. P. 693–702.
  8. Egorov V.V., Zdrachek E.A., Nazarov.V.A. Improved Separate Solution Method for Determination of Low Selectivity Coefficients // Anal. Chem. 2014. Vol. 86. P. 3693 –3696.
  9. Egorov V.V., Zdrachek E.A., Nazarov V.A. Potentiometric selectivity coefficients: problems of experimental determination // J. of Anal. Chem. 2014. Vol. 69. P. 535–541.
  10. Rakhman’ko E.M., Yegorov V.V., A.L. Gulevich, Lushchik Ya. F. The influence of the extraction processes on the functioning of liquid and film membrane ion- selective electrodes // Selective Electrode Rev. 1991. Vol. 13. Р. 5−111. (Review)
  11. Egorov V.V., Borisenko N.D., Rakhman’ko E.M., Lushchik Ya.F., Kacharsky S.S. The effect of the ion exchanger site - counterion complex formation on the selectivity of ISEs // Talanta. 1997. Vol. 44. P. 1735−1747.
  12. Egorov V.V., Rakhman’ko E.M., Gulevich A.L., Lomako S.V., Rat’ko A.A. Metal Complexes as Promising Ionophores for the Production of Anion-Selective Electrodes with Improved Selectivity// Rus. J. of Coord. Chem. 2002.  Vol. 28.  P. 709  725. (Review)
  13. Egorov V., Rakhman’ko E., Okaev E., Nazarov V., Pomelenok E., Pavlova T. Novel Anion Exchangers for Electrodes with Improved Selectivity to Divalent Anions // Electroanalysis. 2004. Vol. 16. P. 1459–1462.
  14. Egorov V.V., Rakhman’ko E.M., Rat’ko A.A. Anion-selective electrodes with liquid membranes // Encyclopedia of Sensors. Eds. C. A. Grimes [et al.]. California: American scientific publishers. 2006. Vol.1. P. 211–240. (Chapter in a book)
  15. Lomako S.V., Astapovich R.I., Nozdrin-Plotnitskaya O.V., Pavlova T.E., She Lei, Nazarov V.A., Okaev E.B., Rakhman’ko E.M., Egorov V. V. Sulfate-selective electrodes and its application for sulfate determination in aqueous solutions // Analytica Chimica Acta. 2006. Vol. 562. P. 216–222.
  16. Egorov V.V. Ion-selective liquid electrodes: Problems of description and experimental determination of selectivity // Rus. J. General Chem. 2008. Vol. 78. P. 2455–2471.(Review)
  17. Egorov V.V., Lyaskovski P L., Il'inchi. I V, Soroka V V., Nazarov V.A. Estimation of ion-pairing constants in plasticized poly(vinyl chloride) membranes using segmented sandwich membranes technique // Electroanalysis. 2009. Vol. 21. P. 2061−2070.
  18. Nazarov V.A., Andronchik K.A., Egorov V.V., Matulis Vadim E., Ivashkevich O.A. Intramembrane complex formation study of ion selective electrodes based on heptyl p-trifluoroacetylbenzoic ether // Electroanalysis. 2011. Vol. 23. P. 1058−1066.
  19. Nazarov V.A., Taryba M.G., Zdrachek E.A., Andronchyk K.A., EgorovV.V., Lamaka. S.V. Sodium- and chloride-selective microelectrodes optimized for corrosion studies // J. of Electroanal. Chem. 2013. Vol. 706. P. 13–24.
  20. Zdrachek E.A., Karotkaya A.G., Nazarov V.A. [et al.] H+-selective microelectrodes with optimized measuring range for corrosion studies // Sens. Actuators B: Chem. 2015. Vol. 207. P. 967–975.
  21. Egorov V.V., Navakouski A.D., Zdrachek E.A. Modeling of the effect of  diffusion processes on the response of ion-selective electrodes by finite differences technique: comparison of theory with experiment and critical evaluation // J. of Anal. Chem. 2017. Vol. 72. P. 793–802.
Просмотров: 369